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Table I. Cyanide Displacement on 1-Bromo- and 1-Chlorooctane" 

1-Halooctane 

1-Bromooctane 

1-Chlorooctane 

Catalyst 

la 
l b 

la 
l b 

Time, hr 

100 
4 
4 

100 
24 
24 

1-Cyano-
octane,* % 

0 
92 

0 
0 

507 

0 

«The temperature for all reactions was 110°. Product mixtures 
were analyzed by GLPC. ^Yields are based on 1-halooctane. 

Scheme I 
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of 1-cyanooctane plus 8% unreacted 1-bromooctane.6 When 
the reaction was carried out using unfunctionalized polysty­
rene (lb) in place of la as the catalyst or in the absence of 
any polymer matrix, 100% of the alkyl bromide remained 
unchanged. Similar results were obtained with l-chlorooc-
tane as the substrate (Table I). 

In order to ensure that these displacement reactions were, 
in fact, being catalyzed by the solid phase, the reaction of 
cyanide ion with 1-bromooctane was repeated but stopped 
after 0.5 hr so that only a 43% yield of 1-cyanooctane was 
obtained. A portion of the aqueous phase (0.4 ml) and the 
organic phase (0.6 ml) was transferred to a second vial, 
which, along with the original vial, was heated for an addi­
tional 2 hr period at 110°. Analysis of the product mixture 
in the vial containing la showed a 90% yield of 1-cyanooc­
tane. In the absence of la, the yield of 1-cyanooctane re­
mained at 43%. 

We have also found that la catalyzes the generation of 
dichlorocarbene from chloroform solutions placed over 
aqueous sodium hydroxide. Thus, when a-methylstyrene 
(0.165 g, 1.4 mmol) dissolved in 2 ml of chloroform was 
added to 2 ml of a 50% aqueous sodium hydroxide solution 
containing la (0.1 g) and the mixture was heated for 40 hr 
at 50°, l,l-dichloro-2-methyl-2-phenylcyclopropane was 
produced in 99% yield.6,8,9 Without la present, a similar re­
action afforded less than 0.1% of the dichlorocyclopropane 
derivative.10 

A technique recently developed for accelerating aqueous 
phase-organic phase reactions (phase-transfer catalysis) 
has proven particularly useful in several synthetic transfor­
mations." One practical limitation to this method, how­
ever, is that many phase-transfer agents promote stable 
emulsions which render work-up difficult. The major ad­
vantage that triphase catalysis has over phase-transfer ca­
talysis is that the catalyst can be removed from the product 
mixture by simple filtration. 

The detailed nature of the catalytic processes reported 
herein needs further clarification and we therefore wish to 
defer mechanistic comments until a later time. Work in 
progress is aimed at (1) defining resin activity in terms of 
concentration of ionic groups along the polymer backbone, 
type of ionic group employed, and degree of swelling of the 
polymer lattice, and (2) exploring the synthetic utility of 
this technique. 
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Stereospecific Conversion of Peptides into ^-Lactams 

Sir: 

Evidence has accumulated which supports the hypothesis 
that the jS-lactam antibiotics, penicillin (1) and cephalospo­
rin C (2), are derived from the so-called Arnstein tripeptide 
(3).' In order to achieve this conversion in vitro we have in­
vestigated the oxidative chemistry of the cysteinylvaline 
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peptide 4 and its derivatives. Since the required oxidation at 
C3 of the cysteine moiety of 4 necessitated stereospecific re­
moval of one of the C3 hydrogens, rotation around the 
C2-C3 bond was frozen by use of the known thiazolidine 
(S).2 Peptide bond formation between 5 and L-valine meth­
yl ester mediated by the reagent EEDQ3 gave the dipeptide 
6, 58%,4 mp 147-148°, [ a ] 2 5

D -139.6° (c 1, CH2Cl2) . Ste­
reospecific functionalization at C3 of the cysteine residue in 
6 was readily achieved by refluxing with benzoyl peroxide 
(4 equiv) in CCLt (1.5 hr) to provide benzoate 7, 55%, mp 
193-194°, H 2 5 D 125.3° (c 1, CH2Cl2); N M R 5 5.1 (1 H, 
s), 6.55 (1 H, s) (C2, C3 hydrogens, J = O Hz). The mecha­
nism of this facile and stereospecific functionalization prob­
ably involves the sequence of Scheme I, i.e., an initial for­
mation of sulfurane, followed by a [2,3]-sigmatropic rear­
rangement of the intermediate ylide.5 The clean stereo­
chemistry results from shielding of the upper face of the 
thiazolidine ring by the bulky valine residue. Hydrolysis of 
the benzoate 7 was achieved in aqueous neutral dioxane at 
125° (4 hr) providing the unstable alcohol 8, 56%: mp 35° 
dec; N M R 8 4.82 (1 H, s), 5.45 (1 H, s) (C2, C3 hydrogens, 
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J = O Hz). Mesylation of 8 with methanesulfonyl chloride 
and pyridine (CH2Cl2 , 0°) gave directly the chloride 9, 
62%: mp 136-137.5°, [a]25D - 2 6 5 ° {c 1, CH2Cl2); N M R S 
5.2 (1 H, s), 5.98 (1 H, s) (C2, C3 hydrogens, / = O Hz). 
However this chloride 9 was more easily obtained (95%) by 
direct treatment of benzoate 7 with hydrogen chloride gas 
(CH2Cl2 , 0°). These facile exchange processes which pro­
ceed with retention of configuration at C3 of the cysteine 
moiety presumably involve the cation 10.6 The remarkable 
resistance toward /3-elimination in this series requires com­
ment. The coupling constant between hydrogens at C2 and 
C3 of derivatives 7-9 is O Hz. This suggests conformation 
11 for all of these compounds, in which the C3-X and 
C2-H bonds are not coplanar and hence resist concerted 
eliminations. Ring closure of chloride 9 was readily 
achieved by treatment with NaH (1.1 equiv) in dichloro-
methane containing tetra-iV-butylammonium iodide (0.1 
equiv)7 at 25°, to yield the 0-lactam 12 as an oil (81%): 
H 2 5 D -304.5° (c 1, CH2Cl2) , \ m a x 1765, 1740 1655 
cm"1 ; N M R 8 5.5 (2 H, AB quartet J = 5.5 Hz) (C2, C3 
hydrogens). 

By starting this same sequence with the D-amino acid es­
ters 13 and 148 and also the dehydrovaline ester 15, it was 
possible to obtain all three /3-lactam containing peptides 16, 
17, and 18. The conversion of these latter substances into 
the naturally occurring /3-lactam antibiotics is in progress.9 
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Protonation of Phosphorus Trihalides 

Sir: 

While protonation of phosphorus in PR3_n(OR')/i sys­
tems is readily accomplished in strong acid,1"5 the evidence 
for the formation of HPX 3

+ cations is limited to a tentative 
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